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The purpose of monotone and the consequences
It’s distributed and works off-line

◮ Every participant has a complete snapshot of the repository.

◮ Committing changes and synchronising with remote databases are
separate operations.

◮ Every participant can set up a server of his/her own at any time.

◮ There’s no dependency on a single central server.

◮ Every file content has a globally unique identifier (using SHA-1).

◮ Every revision has a globally unique identifier (using SHA-1).

◮ Several lines of development can exist in parallell within a branch.

◮ Commit-then-update-after-possibly-merge is encouraged.
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The purpose of monotone and the consequences
It can be set up and used by anyone

◮ No external database server. monotone uses SQLite.

◮ No external communication server needed. monotone has it’s own
communication protocol.

◮ No special privileges needed, apart from the monotone port being
open.
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The purpose of monotone and the consequences
It leaves an audit trail

◮ All changes to the repository are signed cryptographically.
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The purpose of monotone and the consequences
It’s changeset-oriented and atomic

◮ There are two common views on change history: per-file and
per-change.

◮ monotone uses the per-change view.

◮ All operations that change anything are atomic.

◮ All operations that change anything are rolled back on error.
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The purpose of monotone and the consequences
It’s branch-oriented

◮ Every branch is equal.

◮ There is no main trunk.

◮ There is no vendor branch.
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The purpose of monotone and the consequences
It’s history-sensitive
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b99f49b1

◮ The history handled by monotone is
a directed acyclic graph (DAG).

◮ Every revision contains pointers to
it’s parents.
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The purpose of monotone and the consequences
It’s quite easy to understand, and it’s consistent

◮ The internal layout and interconnection of revisions is well
documented.

◮ There are no (should not be :-)) corner case.

◮ Merges consider previous history, so nothing is repeated (i.e. no
unnecessary conflicts).
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What does a development tree look like?
The revision itself

The revision is information about a change, and the revision ID is
it’s SHA-1 hash.

new_manifest [de949f98f03c14d798f17f843fd43beeb52b2f8b]

old_revision [b99f49b10a5135bee6185311f7f68a41c258ffab]

old_manifest [21e67aef084c054f0b4428bfe419def22d3d5e57]

patch "foo"

from [bdca16855faf16c12b6f054813bdde0528cc356b]

to [d686d8faedaffb518ecf7a01c1531cef2600a69b]

↓
{SHA-1}

↓
6714cd29a0bf86c15319199ada76851a9ab2d686
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What does a development tree look like?
Meta-data (certs)

monotone stores meta-data along with revisions in so called certs
(NOT X.509 certificates!):

◮ a revision ID

◮ a name (a cert identifier)

◮ a value

◮ a RSA key reference to the key that has signed this cert

◮ a RSA signature

There are some reserved certs: author, branch, changelog,
date.
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What does a development tree look like?
The concept of branches

◮ Everything lives in branches.

◮ Branches are light weight (an attribute to the revision).

◮ Merging between branches is called “propagating”.
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What does a development tree look like?
The concept of forks in the line of development

◮ Your local database may not always
be entirely updated.

◮ You may lack the most recent
revisions.

◮ When you pull new data to your
database, you may find that a fork
has formed.

◮ DON’T PANIC! This is a feature,
and happens pretty commonly.

◮ monotone developers see this all the
time.

◮ When seeing a fork, merge! 0f7114080f711408

2f415492

bfd13cb1 315944d5

3b9bbaf8
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a0592c4e

b99f49b1
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Workflow, storage and control
Normal workflow
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Workflow, storage and control
Storage

Your work is potentially stored in three places (Who needs backups?

:-)):

◮ in your work directory

◮ in your local database

◮ in a remote database

Your work directory has a special administrative subdirectory, MT.
It has at least three files, options, revision and log.
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Workflow, storage and control
How is control performed?

◮ Distributed means access control works differently!

◮ You have control over what changes get applied to your work
directory.

◮ You do not have control over the changes done to anyone
else’s work directory.

◮ Control is based on your trust in the signatures.

◮ Control is done through programmable hooks.

◮ Control is done on: local commit, cert signatures, test results,
network reads and network writes.
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In practice

Let’s see what we can do with monotone...
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In practice
Creating a database

First, you must create your local database.

/home/levitte$ monotone --db=~/db.project db init

/home/levitte$ monotone --db=~/db.project genkey levitte@lp.se

monotone: generating key-pair ’levitte@lp.se’

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

confirm passphrase for key ID [levitte@lp.se]: <enter passphrase>

monotone: storing key-pair ’levitte@lp.se’ in database
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In practice
Starting a project

You start a new project by creating a work directory.

/home/levitte$ monotone --db=~/db.project --branch=foo.com:project \

setup project

/home/levitte$ ls -R project

project:

MT

project/MT:

log options revision
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In practice
Starting work on someone else’s project

To work on someone else’s project, you pull it first!

/home/levitte$ monotone --db=~/db.project \

pull server.foo.com ’foo.com:project*’

Then you check out the branch you want.

/home/levitte$ monotone --db=~/db.project --branch=foo.com:project \

co project
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In practice
Staying up to date

Staying up to date is an easy two-step operation.

/home/levitte/project\$ monotone pull

...

/home/levitte/project\$ monotone update

...

Oh, wait, did you notice something odd?
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In practice
Adding files

Let’s add a file to the project.

/home/levitte/project$ cat >> NOTES

Adding a private not just for the heck of it...

^D

/home/levitte/project$ monotone add NOTES

monotone: adding NOTES to working copy add set

And look, a new administrative file appeared!

/home/levitte/project$ ls MT

log options revision work

/home/levitte/project$ cat MT/work

add_file "NOTES"
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In practice
Committing changes

When satisfied with the changes, commit!

/home/levitte/project$ monotone commit -m "a commit"

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

monotone: beginning commit on branch ’foo.com:project’

monotone: committed revision 2e24d49a48adf9acf3a1b6391a080008cbef9c21

There’s no MT/work any more, it’s operations having been
performed.

/home/levitte/project$ cat MT/revision

2e24d49a48adf9acf3a1b6391a080008cbef9c21
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In practice
Taking a look at the revision data

Let’s look at the meta-data that came with the committed revision.

/home/levitte/monotone$ monotone list certs 2e

monotone: expanded selector ’2e’ -> ’i:2e’

monotone: expanding selection ’2e’

monotone: expanded to ’2e24d49a48adf9acf3a1b6391a080008cbef9c21’

-----------------------------------------------------------------

Key : levitte@lp.se

Sig : ok

Name : branch

Value : foo.com:project

-----------------------------------------------------------------

Key : levitte@lp.se

Sig : ok

Name : date

Value : 2004-10-26T02:53:08

-----------------------------------------------------------------

Key : levitte@lp.se

Sig : ok

Name : author

Value : levitte@lp.se

-----------------------------------------------------------------

Key : levitte@lp.se

Sig : ok

Name : changelog

Value : a commit
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In practice
Pushing your changes

If you want to push your changes to a remote server, you need to
send your public key to it’s administrator so he/she can give you
access.

/home/levitte/project$ monotone pubkey levitte@lp.se > ~/levitte.pubkey

\footnotesize

/home/levitte/project$ cat ~/levitte.pubkey

[pubkey levitte@lp.se]

MIGdMA0GCSqGSIb3DQEBAQUAA4GLADCBhwKBgQC2CmCt662Ci9hff7R0YL6n02kksLlEU/+e

2V70s73pYmdFtFTjATYUVgVLV24TdXm5TQaVho4WWzGzGeYtcax4IjLBUo0uzznky4iZLei7

XfLDdFyS3+c4f1DXNx7OA3HkAuyHrxveOnqfMuQzUZoswwTue2Rhx3JUEndi2ubKoQIBEQ==

[end]

After you have access, all you need is to push.

/home/levitte/project$ monotone push

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

...
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In practice
Dealing with a fork
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/home/levitte/project$ EDITOR=emacs monotone merge

monotone: starting with revision 1 / 2

monotone: merging with revision 2 / 2

monotone: [source] 0f711408dfddd6afa65e9e3f5619d38d250bd09f

monotone: [source] 6714cd29a0bf86c15319199ada76851a9ab2d686

monotone: common ancestor b99f49b10a5135bee6185311f7f68a41c258ffa

b levitte+project@lp.se 2005-09-29T21:45:53 found

monotone: trying 3-way merge

monotone: help required for 3-way merge

monotone: [ancestor] foo

monotone: [ left] foo

monotone: [ right] foo

monotone: [ merged] foo

executing external 3-way merge command

enter passphrase for key ID [levitte+project@lp.se]:

monotone: [merged] 4b3cd3ee5682aa7f5865c4728ea89fd2a7dbba1a

monotone: note: your working copies have not been updated
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In practice
Branching

Time to create a branch in the development:. First, we need to
move to a starting point.

/home/levitte/project$monotone update -r b99

monotone: expanded selector ’b99’ -> ’i:b99’

monotone: expanding selection ’b99’

monotone: expanded to ’b99f49b10a5135bee6185311f7f68a41c258ffab’

monotone: selected update target b99f49b10a5135bee6185311f7f68a41c258ffab

monotone: updating foo to bdca16855faf16c12b6f054813bdde0528cc356b

monotone: updated to base revision b99f49b10a5135bee6185311f7f68a41c258ffab

And then we do a reformatting change and commit it to the new
branch.

/home/levitte/project$ monotone ci -b lp.se:testbed.project.reformat \

-m "Reformat"

monotone: beginning commit on branch ’lp.se:testbed.project.reformat’

enter passphrase for key ID [levitte+project@lp.se]:

monotone: committed revision 28e73a329fc2566a734da05521bf51ffdc79dd2b
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In practice
Propagating from onte branch to another

At some point, you might want to make sure your branch us
updated with the latest changes from the main line of development.

/home/levitte/project$ EDITOR=emacs monotone propagate \

lp.se:testbed.project \

lp.se:testbed.project.reformat

monotone: propagating lp.se:testbed.project -> lp.se:testbed.project.reformat

monotone: [source] 4b3cd3ee5682aa7f5865c4728ea89fd2a7dbba1a

monotone: [target] 28e73a329fc2566a734da05521bf51ffdc79dd2b

monotone: common ancestor b99f49b10a5135bee6185311f7f68a41c258ffab levitte+pr

oject@lp.se 2005-09-29T21:45:53 found

monotone: trying 3-way merge

monotone: help required for 3-way merge

monotone: [ancestor] foo

monotone: [ left] foo

monotone: [ right] foo

monotone: [ merged] foo

executing external 3-way merge command

enter passphrase for key ID [levitte+project@lp.se]:

monotone: [merged] df2f4d07675b0089d6b04864bc30cfe8a98447b4
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A word on uniqueness and world-wide distribution

◮ A repository is potentially distributed world-wide.

◮ A repository is potentially merged together with other
repositories in a single database.

◮ You risk name clashes!

To solve this problem, branch names, tag names and key identities
need to be unique world-wide. There are conventions and
proposals to do just that.
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A word on uniqueness and world-wide distribution
Naming a branch

The general convention is that branches and sub-branches are
separated with periods.

Example: foo.bar.cookies, which is a sub-branch to foo.bar

This isn’t globally unique!

Current convention for globally unique branch names:

RFQDN.branch[.subbranch[...]]

An alternate proposal that separates the host name from the
branches:

FQDN:branch[.subbranch[...]]

Examples: net.venge.monotone, free.lp.se:X.ctwm
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A word on uniqueness and world-wide distribution
Naming a key identity

With monotone, you can’t have several keys with the same
identity!

Current convention: give each key an email address for an identity.

Example: levitte@lp.se

If you want to use several different keys for different projects, use
an email address with a + directive added.

Example: levitte+project1@lp.se

Note: The key identity doesn’t have to be a real working email
address!
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A word on uniqueness and world-wide distribution
Naming a tag

There is no convention for tag names!
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Tools

There are a number of practical tools that interact with monotone

in different ways. Here’s a selection:

monotone-viz A monotone history visualiser, built with GTK+.

viewmtn a web interface to a monotone repository.

mtsh GTK+ wrapper for monotone focusing on working copy
operations – add, drop, revert, rename, commit, update,
diff, and browsing. Has a mechanism for per-file commit
comments.

shell completion monotone ships with completion scripts for both bash
and zsh, in the contrib/ directory of monotone’s source
tree.

RSCM::Monotone a ruby interface to monotone.

monotone-notify.pl A script to watch a monotone repository and, for
example, send emails on commits. In contrib/ directory of
monotone’s source tree.
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Where to go next

This was just a short presentation of monotone. There’s a lot
more, and if you want to know more, a good starting point is to
pick up the manual
(http://www.venge.net/monotone/monotone.pdf).

http://www.venge.net/monotone/

The source of all things monotone.

http://www.lua.org/

The language to program monotone hooks.
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