
Modern Source Code Management and

monotone

Version 0.1

Richard Levitte, LP
mailto:levittelp.se

October 6, 2005

LP http://www.lp.se/ mailto:levitte@lp.se



Content

◮ The purpose of monotone and the consequences

◮ What does a development tree look like?

◮ Workflow, storage and control

◮ In practice

◮ A word on uniqueness and world-wide distribution

◮ Tools

◮ Where to go next

LP http://www.lp.se/ mailto:levitte@lp.se



The purpose of monotone and the consequences
It’s distributed and works off-line

◮ Every participant has a complete snapshot of the repository.

◮ Committing changes and synchronising with remote databases are
separate operations.

◮ Every participant can set up a server of his/her own at any time.

◮ There’s no dependency on a single central server.

◮ Every file content has a globally unique identifier (using SHA-1).

◮ Every revision has a globally unique identifier (using SHA-1).

◮ Several lines of development can exist in parallell within a branch.

◮ Commit-then-update-after-possibly-merge is encouraged.

LP http://www.lp.se/ mailto:levitte@lp.se



The purpose of monotone and the consequences
It can be set up and used by anyone

◮ No external database server. monotone uses SQLite.

◮ No external communication server needed. monotone has it’s own
communication protocol.

◮ No special privileges needed, apart from the monotone port being
open.

LP http://www.lp.se/ mailto:levitte@lp.se



The purpose of monotone and the consequences
It leaves an audit trail

◮ All changes to the repository are signed cryptographically.

LP http://www.lp.se/ mailto:levitte@lp.se



The purpose of monotone and the consequences
It’s changeset-oriented and atomic

◮ There are two common views on change history: per-file and
per-change.

◮ monotone uses the per-change view.

◮ All operations that change anything are atomic.

◮ All operations that change anything are rolled back on error.

LP http://www.lp.se/ mailto:levitte@lp.se



The purpose of monotone and the consequences
It’s branch-oriented

◮ Every branch is equal.

◮ There is no main trunk.

◮ There is no vendor branch.

LP http://www.lp.se/ mailto:levitte@lp.se



The purpose of monotone and the consequences
It’s history-sensitive

0f711408

2f415492

bfd13cb1 315944d5

3b9bbaf8

de12a546

9cb4437a

a0592c4e

b99f49b1

◮ The history handled by monotone is
a directed acyclic graph (DAG).

◮ Every revision contains pointers to
it’s parents.

LP http://www.lp.se/ mailto:levitte@lp.se



The purpose of monotone and the consequences
It’s quite easy to understand, and it’s consistent

◮ The internal layout and interconnection of revisions is well
documented.

◮ There are no (should not be :-)) corner case.

◮ Merges consider previous history, so nothing is repeated (i.e. no
unnecessary conflicts).

LP http://www.lp.se/ mailto:levitte@lp.se



What does a development tree look like?
The revision itself

The revision is information about a change, and the revision ID is
it’s SHA-1 hash.

new_manifest [de949f98f03c14d798f17f843fd43beeb52b2f8b]

old_revision [b99f49b10a5135bee6185311f7f68a41c258ffab]

old_manifest [21e67aef084c054f0b4428bfe419def22d3d5e57]

patch "foo"

from [bdca16855faf16c12b6f054813bdde0528cc356b]

to [d686d8faedaffb518ecf7a01c1531cef2600a69b]

↓
{SHA-1}

↓
6714cd29a0bf86c15319199ada76851a9ab2d686

LP http://www.lp.se/ mailto:levitte@lp.se



What does a development tree look like?
Meta-data (certs)

monotone stores meta-data along with revisions in so called certs
(NOT X.509 certificates!):

◮ a revision ID

◮ a name (a cert identifier)

◮ a value

◮ a RSA key reference to the key that has signed this cert

◮ a RSA signature

There are some reserved certs: author, branch, changelog,
date.

LP http://www.lp.se/ mailto:levitte@lp.se



What does a development tree look like?
The concept of branches

◮ Everything lives in branches.

◮ Branches are light weight (an attribute to the revision).

◮ Merging between branches is called “propagating”.

LP http://www.lp.se/ mailto:levitte@lp.se



What does a development tree look like?
The concept of forks in the line of development

◮ Your local database may not always
be entirely updated.

◮ You may lack the most recent
revisions.

◮ When you pull new data to your
database, you may find that a fork
has formed.

◮ DON’T PANIC! This is a feature,
and happens pretty commonly.

◮ monotone developers see this all the
time.

◮ When seeing a fork, merge! 0f7114080f711408

2f415492

bfd13cb1 315944d5

3b9bbaf8

de12a546

9cb4437a

a0592c4e

b99f49b1

LP http://www.lp.se/ mailto:levitte@lp.se



Workflow, storage and control
Normal workflow

remote
database

local
database

working
copy

commit, update
(certified local exchanges)

push, pull, sync
(untrusted network exchanges)

push

pull

syncremote
database

local
database

working
copy

src/func.c

src/func.h

src/main.c

Makefile

MT/

add, commit

checkout, update

local
database

LP http://www.lp.se/ mailto:levitte@lp.se



Workflow, storage and control
Storage

Your work is potentially stored in three places (Who needs backups?

:-)):

◮ in your work directory

◮ in your local database

◮ in a remote database

Your work directory has a special administrative subdirectory, MT.
It has at least three files, options, revision and log.

LP http://www.lp.se/ mailto:levitte@lp.se



Workflow, storage and control
How is control performed?

◮ Distributed means access control works differently!

◮ You have control over what changes get applied to your work
directory.

◮ You do not have control over the changes done to anyone
else’s work directory.

◮ Control is based on your trust in the signatures.

◮ Control is done through programmable hooks.

◮ Control is done on: local commit, cert signatures, test results,
network reads and network writes.

LP http://www.lp.se/ mailto:levitte@lp.se



In practice

Let’s see what we can do with monotone...

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Creating a database

First, you must create your local database.

/home/levitte$ monotone --db=~/db.project db init

/home/levitte$ monotone --db=~/db.project genkey levitte@lp.se

monotone: generating key-pair ’levitte@lp.se’

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

confirm passphrase for key ID [levitte@lp.se]: <enter passphrase>

monotone: storing key-pair ’levitte@lp.se’ in database

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Starting a project

You start a new project by creating a work directory.

/home/levitte$ monotone --db=~/db.project --branch=foo.com:project \

setup project

/home/levitte$ ls -R project

project:

MT

project/MT:

log options revision

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Starting work on someone else’s project

To work on someone else’s project, you pull it first!

/home/levitte$ monotone --db=~/db.project \

pull server.foo.com ’foo.com:project*’

Then you check out the branch you want.

/home/levitte$ monotone --db=~/db.project --branch=foo.com:project \

co project

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Staying up to date

Staying up to date is an easy two-step operation.

/home/levitte/project\$ monotone pull

...

/home/levitte/project\$ monotone update

...

Oh, wait, did you notice something odd?

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Adding files

Let’s add a file to the project.

/home/levitte/project$ cat >> NOTES

Adding a private not just for the heck of it...

^D

/home/levitte/project$ monotone add NOTES

monotone: adding NOTES to working copy add set

And look, a new administrative file appeared!

/home/levitte/project$ ls MT

log options revision work

/home/levitte/project$ cat MT/work

add_file "NOTES"

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Committing changes

When satisfied with the changes, commit!

/home/levitte/project$ monotone commit -m "a commit"

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

monotone: beginning commit on branch ’foo.com:project’

monotone: committed revision 2e24d49a48adf9acf3a1b6391a080008cbef9c21

There’s no MT/work any more, it’s operations having been
performed.

/home/levitte/project$ cat MT/revision

2e24d49a48adf9acf3a1b6391a080008cbef9c21

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Taking a look at the revision data

Let’s look at the meta-data that came with the committed revision.

/home/levitte/monotone$ monotone list certs 2e

monotone: expanded selector ’2e’ -> ’i:2e’

monotone: expanding selection ’2e’

monotone: expanded to ’2e24d49a48adf9acf3a1b6391a080008cbef9c21’

-----------------------------------------------------------------

Key : levitte@lp.se

Sig : ok

Name : branch

Value : foo.com:project

-----------------------------------------------------------------

Key : levitte@lp.se

Sig : ok

Name : date

Value : 2004-10-26T02:53:08

-----------------------------------------------------------------

Key : levitte@lp.se

Sig : ok

Name : author

Value : levitte@lp.se

-----------------------------------------------------------------

Key : levitte@lp.se

Sig : ok

Name : changelog

Value : a commit

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Pushing your changes

If you want to push your changes to a remote server, you need to
send your public key to it’s administrator so he/she can give you
access.

/home/levitte/project$ monotone pubkey levitte@lp.se > ~/levitte.pubkey

\footnotesize

/home/levitte/project$ cat ~/levitte.pubkey

[pubkey levitte@lp.se]

MIGdMA0GCSqGSIb3DQEBAQUAA4GLADCBhwKBgQC2CmCt662Ci9hff7R0YL6n02kksLlEU/+e

2V70s73pYmdFtFTjATYUVgVLV24TdXm5TQaVho4WWzGzGeYtcax4IjLBUo0uzznky4iZLei7

XfLDdFyS3+c4f1DXNx7OA3HkAuyHrxveOnqfMuQzUZoswwTue2Rhx3JUEndi2ubKoQIBEQ==

[end]

After you have access, all you need is to push.

/home/levitte/project$ monotone push

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

...

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Dealing with a fork

0f7114080f711408

2f415492

bfd13cb1 315944d5

3b9bbaf8

de12a546

9cb4437a

a0592c4e

b99f49b1

/home/levitte/project$ EDITOR=emacs monotone merge

monotone: starting with revision 1 / 2

monotone: merging with revision 2 / 2

monotone: [source] 0f711408dfddd6afa65e9e3f5619d38d250bd09f

monotone: [source] 6714cd29a0bf86c15319199ada76851a9ab2d686

monotone: common ancestor b99f49b10a5135bee6185311f7f68a41c258ffa

b levitte+project@lp.se 2005-09-29T21:45:53 found

monotone: trying 3-way merge

monotone: help required for 3-way merge

monotone: [ancestor] foo

monotone: [ left] foo

monotone: [ right] foo

monotone: [ merged] foo

executing external 3-way merge command

enter passphrase for key ID [levitte+project@lp.se]:

monotone: [merged] 4b3cd3ee5682aa7f5865c4728ea89fd2a7dbba1a

monotone: note: your working copies have not been updated

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Branching

Time to create a branch in the development:. First, we need to
move to a starting point.

/home/levitte/project$monotone update -r b99

monotone: expanded selector ’b99’ -> ’i:b99’

monotone: expanding selection ’b99’

monotone: expanded to ’b99f49b10a5135bee6185311f7f68a41c258ffab’

monotone: selected update target b99f49b10a5135bee6185311f7f68a41c258ffab

monotone: updating foo to bdca16855faf16c12b6f054813bdde0528cc356b

monotone: updated to base revision b99f49b10a5135bee6185311f7f68a41c258ffab

And then we do a reformatting change and commit it to the new
branch.

/home/levitte/project$ monotone ci -b lp.se:testbed.project.reformat \

-m "Reformat"

monotone: beginning commit on branch ’lp.se:testbed.project.reformat’

enter passphrase for key ID [levitte+project@lp.se]:

monotone: committed revision 28e73a329fc2566a734da05521bf51ffdc79dd2b

LP http://www.lp.se/ mailto:levitte@lp.se



In practice
Propagating from onte branch to another

At some point, you might want to make sure your branch us
updated with the latest changes from the main line of development.

/home/levitte/project$ EDITOR=emacs monotone propagate \

lp.se:testbed.project \

lp.se:testbed.project.reformat

monotone: propagating lp.se:testbed.project -> lp.se:testbed.project.reformat

monotone: [source] 4b3cd3ee5682aa7f5865c4728ea89fd2a7dbba1a

monotone: [target] 28e73a329fc2566a734da05521bf51ffdc79dd2b

monotone: common ancestor b99f49b10a5135bee6185311f7f68a41c258ffab levitte+pr

oject@lp.se 2005-09-29T21:45:53 found

monotone: trying 3-way merge

monotone: help required for 3-way merge

monotone: [ancestor] foo

monotone: [ left] foo

monotone: [ right] foo

monotone: [ merged] foo

executing external 3-way merge command

enter passphrase for key ID [levitte+project@lp.se]:

monotone: [merged] df2f4d07675b0089d6b04864bc30cfe8a98447b4

LP http://www.lp.se/ mailto:levitte@lp.se



A word on uniqueness and world-wide distribution

◮ A repository is potentially distributed world-wide.

◮ A repository is potentially merged together with other
repositories in a single database.

◮ You risk name clashes!

To solve this problem, branch names, tag names and key identities
need to be unique world-wide. There are conventions and
proposals to do just that.

LP http://www.lp.se/ mailto:levitte@lp.se



A word on uniqueness and world-wide distribution
Naming a branch

The general convention is that branches and sub-branches are
separated with periods.

Example: foo.bar.cookies, which is a sub-branch to foo.bar

This isn’t globally unique!

Current convention for globally unique branch names:

RFQDN.branch[.subbranch[...]]

An alternate proposal that separates the host name from the
branches:

FQDN:branch[.subbranch[...]]

Examples: net.venge.monotone, free.lp.se:X.ctwm

LP http://www.lp.se/ mailto:levitte@lp.se



A word on uniqueness and world-wide distribution
Naming a key identity

With monotone, you can’t have several keys with the same
identity!

Current convention: give each key an email address for an identity.

Example: levitte@lp.se

If you want to use several different keys for different projects, use
an email address with a + directive added.

Example: levitte+project1@lp.se

Note: The key identity doesn’t have to be a real working email
address!

LP http://www.lp.se/ mailto:levitte@lp.se



A word on uniqueness and world-wide distribution
Naming a tag

There is no convention for tag names!

LP http://www.lp.se/ mailto:levitte@lp.se



Tools

There are a number of practical tools that interact with monotone

in different ways. Here’s a selection:

monotone-viz A monotone history visualiser, built with GTK+.

viewmtn a web interface to a monotone repository.

mtsh GTK+ wrapper for monotone focusing on working copy
operations – add, drop, revert, rename, commit, update,
diff, and browsing. Has a mechanism for per-file commit
comments.

shell completion monotone ships with completion scripts for both bash
and zsh, in the contrib/ directory of monotone’s source
tree.

RSCM::Monotone a ruby interface to monotone.

monotone-notify.pl A script to watch a monotone repository and, for
example, send emails on commits. In contrib/ directory of
monotone’s source tree.

LP http://www.lp.se/ mailto:levitte@lp.se



Where to go next

This was just a short presentation of monotone. There’s a lot
more, and if you want to know more, a good starting point is to
pick up the manual
(http://www.venge.net/monotone/monotone.pdf).

http://www.venge.net/monotone/

The source of all things monotone.

http://www.lua.org/

The language to program monotone hooks.

LP http://www.lp.se/ mailto:levitte@lp.se

http://www.venge.net/monotone/monotone.pdf
http://www.venge.net/monotone/
http://www.lua.org/

	Content
	The purpose of monotone and the consequences
	It's distributed and works off-line
	It can be set up and used by anyone
	It leaves an audit trail
	It's changeset-oriented and atomic
	It's branch-oriented
	It's history-sensitive
	It's quite easy to understand, and it's consistent

	What does a development tree look like?
	The revision itself
	Meta-data (certs)
	The concept of branches
	The concept of forks in the line of development

	Workflow, storage and control
	Normal workflow
	Storage
	How is control performed?

	In practice
	Creating a database
	Starting a project
	Starting work on someone else's project
	Staying up to date
	Adding files
	Committing changes
	Taking a look at the revision data
	Pushing your changes
	Dealing with a fork
	Branching
	Propagating from onte branch to another

	A word on uniqueness and world-wide distribution
	Naming a branch
	Naming a key identity
	Naming a tag

	Tools
	Where to go next

