
◮ Every participant has a complete snapshot of the repository.

◮ Committing changes and synchronising with remote databases are
separate operations.

◮ Every participant can set up a server of his/her own at any time.

◮ There’s no dependency on a single central server.

◮ Every file content has a globally unique identifier (using SHA-1).

◮ Every revision has a globally unique identifier (using SHA-1).

◮ Several lines of development can exist in parallell within a branch.

◮ Commit-then-update-after-possibly-merge is encouraged.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

The purpose of monotone and the consequences

It’s distributed and works off-line

• every participant has a complete snapshot of the repository.
• the local copy of the repository is synchronised with a remote server

through an operation separate from committing a change.
• because every participant always has a complete copy of the

repository, every participant can set up a server of his/her own at
any time.

• because of this, there’s no dependency on a single central server
(unless there’s only one official server, of course).

• some sort of unique revision identity. With monotone, the choice
fell on SHA-1 hash values of the revision data and file data.

• Forget the streamlined update-then-commit model that CVS, SVN
and a few more centralised SCMs. Several lines of development can
exist in parallell within a branch.

• It’s actually encouraged to commit your changes first and update
afterwards. If a fork appeared, you can always merge.

◮ No external database server. monotone uses SQLite.

◮ No external communication server needed. monotone has it’s own
communication protocol.

◮ No special privileges needed, apart from the monotone port being
open.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

The purpose of monotone and the consequences

It can be set up and used by anyone

• monotone doesn’t depend on any external database server. The
repository database is managed with SQLite.

• monotone doesn’t depend on any external communication server. It
has it’s own communication protocol (an adaptation of rsync).

• monotone doesn’t need any special privileges, except for the
monotone port (was 5253, will soon be 4961 through IANA
assignment). It can be used as-is by any user.

◮ All changes to the repository are signed cryptographically.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

The purpose of monotone and the consequences

It leaves an audit trail

• Everything that’s placed in the repository is signed using RSA keys.
Changes, files, meta-data alike.

◮ There are two common views on change history: per-file and
per-change.

◮ monotone uses the per-change view.

◮ All operations that change anything are atomic.

◮ All operations that change anything are rolled back on error.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

The purpose of monotone and the consequences

It’s changeset-oriented and atomic

• There’s a political battle going on if revisions should be regarded as
a per-file property (as it is with CVS, Digital CMS, as well as their
inspiration like RCS, SCCS and the like) or a per-change property
(as it is in almost all more modern SCMs).

• Since politics isn’t really the purpose of this lecture, I’ll just say that
monotone regards revisions as per-change properties, and is
therefore called changeset-oriented.

• An important property with monotone is that commits, as well as
anything else that changes the repository database, are atomic and
will roll back completely if an error occurs, therefore always leavin
the repository database in a consistent state.

◮ Every branch is equal.

◮ There is no main trunk.

◮ There is no vendor branch.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

The purpose of monotone and the consequences

It’s branch-oriented

monotone has everything in branches.
In some SCMs, like CVS and SVN, there’s the concept of a main trunk or
base. monotone doesn’t have any such concept. Instead, it’s up to the
user to define what branch is to be considered the main trunk and inform
all other developers.

Likewise, CVS has a concept of vendor branches, where external source is

tracked. Again, monotone doesn’t have any such concept, and leaves it

up to the user to define such a branch and handle external source

accordingly. There are scripts that can be used to implement this easily.

0f711408

2f415492

bfd13cb1 315944d5

3b9bbaf8

de12a546

9cb4437a

a0592c4e

b99f49b1

◮ The history handled by monotone is
a directed acyclic graph (DAG).

◮ Every revision contains pointers to
it’s parents.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

The purpose of monotone and the consequences

It’s history-sensitive

The development history in a repository is a directed acyclic graph

(DAG). This is implemented by having every revision include the

identities of it’s parents.

◮ The internal layout and interconnection of revisions is well
documented.

◮ There are no (should not be :-)) corner case.

◮ Merges consider previous history, so nothing is repeated (i.e. no
unnecessary conflicts).

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

The purpose of monotone and the consequences

It’s quite easy to understand, and it’s consistent

• how revisions are formatted, how the revision IDs are created and
such are very well documented in the manual.

• There are not (should not be, for the moment) any corner case that
behaves in an inconsistent way with the general way monotone

works.
• merges gives consideration to previous history, and a remerge of the

same two lines of development therefore don’t become
conflict-loaded messes as it does with other SCMs (CVS and SVN
alike, for example).

The revision is information about a change, and the revision ID is
it’s SHA-1 hash.

new_manifest [de949f98f03c14d798f17f843fd43beeb52b2f8b]

old_revision [b99f49b10a5135bee6185311f7f68a41c258ffab]

old_manifest [21e67aef084c054f0b4428bfe419def22d3d5e57]

patch "foo"

from [bdca16855faf16c12b6f054813bdde0528cc356b]

to [d686d8faedaffb518ecf7a01c1531cef2600a69b]

↓
{SHA-1}

↓
6714cd29a0bf86c15319199ada76851a9ab2d686

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

What does a development tree look like?

The revision itself

The revision is the basis of source control with monotone. Every revision
expresses what changes have been made since the parent revision or
revisions (in case of a merge or propagate), and refers back to it’s
parents. Every revision is always considered unique.

A quote from another monotone developer: “the last revisionid can be

used to prove that all previous revisions existed”

monotone stores meta-data along with revisions in so called certs
(NOT X.509 certificates!):

◮ a revision ID

◮ a name (a cert identifier)

◮ a value

◮ a RSA key reference to the key that has signed this cert

◮ a RSA signature

There are some reserved certs: author, branch, changelog,
date.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

What does a development tree look like?

Meta-data (certs)

monotone can store meta-data along with revisions, some of it
automatically, in something called certs (NOT to be confused with X.509
certificates). Viewed another way, you could say that each cert is a
statement that someone does about this revision. A cert is basically a
tuple consisting of the following:

• a revision ID

• a name (a cert identifier)

• a value

• a RSA key reference to the key that has signed this cert

• a RSA signature

Among other things that are stored as certs, you always find the commit

author, the commit date, the branches this revision belongs to and the

change log.

◮ Everything lives in branches.

◮ Branches are light weight (an attribute to the revision).

◮ Merging between branches is called “propagating”.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

What does a development tree look like?

The concept of branches

In monotone, everything lives in branches. There’s no main trunk, it’s up
to the developpers to decide which branch is to be regarded as a main
trunk.
Also, branches are light-weight, and are really just an attribute attached
to each revision.

In monotone, merging changes from one branch to another is called

“propagating”.

◮ Your local database may not always
be entirely updated.

◮ You may lack the most recent
revisions.

◮ When you pull new data to your
database, you may find that a fork
has formed.

◮ DON’T PANIC! This is a feature,
and happens pretty commonly.

◮ monotone developers see this all the
time.

◮ When seeing a fork, merge! 0f7114080f711408

2f415492

bfd13cb1 315944d5

3b9bbaf8

de12a546

9cb4437a

a0592c4e

b99f49b1
2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

What does a development tree look like?

The concept of forks in the line of development

As a consequence of the distributed nature of monotone, you can never
be sure that any server has all the history at every moment in time. It is
therefore perfectly possible to have several changes coming from the
same revision, or in other words, any revision may have more than one
child. This is called a fork in a branch, or a multiheaded branch. Because
of this, it may be necessary for someone to merge the heads together at
some well chosen moment.
The development tree for monotone has these forks and merges
happening all over the place.

To those who are used to the clean update-then-commit model that CVS

follows, the mesh of development that will emerge with monotone’s

model may seem scary, but really isn’t. The only current problem is that

conflicts have to be fixed as part of the merge, there’s no possibility to

have the conflicting source in your work directory and do the work in a

calmer manner. THIS IS BEING WORKED ON AS WE SPEAK!

remote
database

local
database

working
copy

commit, update
(certified local exchanges)

push, pull, sync
(untrusted network exchanges)

push

pull

syncremote
database

local
database

working
copy

src/func.c

src/func.h

src/main.c

Makefile

MT/

add, commit

checkout, update

local
database

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

Workflow, storage and control

Normal workflow

Because commits can be done off-line, there’s a separation between the

revision workflow (commits and updates) and the network workflow.

Basically, you commit from and update your work directory from a local

database, which you synchronise separately with a remote server (using

push, pull or sync).

Your work is potentially stored in three places (Who needs backups?

:-)):

◮ in your work directory

◮ in your local database

◮ in a remote database

Your work directory has a special administrative subdirectory, MT.
It has at least three files, options, revision and log.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

Workflow, storage and control

Storage

So your work is potentially stored in three places:
- in your work directory. - in your local database. - in a remote database.
Who needs backups? :-)

Your work directory has one special subdirectory that’s always ignored

when committing, called MT. It’s used for administration purposes and as

temporary storage for some complex operations, and you may use it for

your own fiddling if needed (BUT BE CAUTIOUS!).

◮ Distributed means access control works differently!

◮ You have control over what changes get applied to your work
directory.

◮ You do not have control over the changes done to anyone
else’s work directory.

◮ Control is based on your trust in the signatures.

◮ Control is done through programmable hooks.

◮ Control is done on: local commit, cert signatures, test results,
network reads and network writes.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

Workflow, storage and control

How is control performed?

Again, because of the distributed nature of monotone, access control
can’t really be done in a “traditional” manner as it’s done in centralised
SCMs. One view of a monotone repository is that it’s simply a
placeholder for information, and that it’s up to everyone who want to pull
data to decide what he/she trusts.
So basically, the decision on who and what to trust is left with every
participant. It is possible to control what get’s into a database on a
server by limiting who has read and write access.
It should be noted that there are talks about some ACL like functionality
built into monotone, but nothing real has emerged yet.
Control is performed through hooks to user-defined functions, covering
the following:

- local commits (done during commit) - cert signatures (done during

update) - test results (done during update) - netsync reads (done during

serve when someone does a pull or sync) - netsync writes (done during

serve when someone does a push or sync)

First, you must create your local database.

/home/levitte$ monotone --db=~/db.project db init

/home/levitte$ monotone --db=~/db.project genkey levitte@lp.se

monotone: generating key-pair ’levitte@lp.se’

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

confirm passphrase for key ID [levitte@lp.se]: <enter passphrase>

monotone: storing key-pair ’levitte@lp.se’ in database

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Creating a database

Before you do anything else with monotone, you must create the

database. If you intend to commit anything, you also need to create a

key pair.

You start a new project by creating a work directory.

/home/levitte$ monotone --db=~/db.project --branch=foo.com:project \

setup project

/home/levitte$ ls -R project

project:

MT

project/MT:

log options revision
2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Starting a project

Starting a new project involves deciding on a new branch name and
creating a work directory.
When that’s done, there’s the work directory project with a
subdirectory MT.

The files in project/MT are administrative files. revision contains the

current revision identity. options contains information of all sorts, like

the current database and branch for that work directory.

To work on someone else’s project, you pull it first!

/home/levitte$ monotone --db=~/db.project \

pull server.foo.com ’foo.com:project*’

Then you check out the branch you want.

/home/levitte$ monotone --db=~/db.project --branch=foo.com:project \

co project
2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Starting work on someone else’s project

If you want to start working (or even just looking at someone else’s
project), you need to pull a copy of the database, then check out the
chosen branch into a work directory.
Note that the last argument has a wildcard because I want to get all
branches that start with foo.com:project (so I get sub-branches as
well). If I only want the foo.com:project branch while ignoring all
sub-branches (which might have slightly surprising results, btw :-)).
The second step is to check out the stuff.

Staying up to date is an easy two-step operation.

/home/levitte/project\$ monotone pull

...

/home/levitte/project\$ monotone update

...

Oh, wait, did you notice something odd?

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Staying up to date

When you collaborate with others, you need to pull changes made by
others and update your work directory.

Note that we didn’t need to give monotone pull any information about

what server to connect with or what branch pattern to pull! This is

because the information was stored in the database when the first

monotone pull was done, in special database variables that are used to

store defaults.

Let’s add a file to the project.

/home/levitte/project$ cat >> NOTES

Adding a private not just for the heck of it...

^D

/home/levitte/project$ monotone add NOTES

monotone: adding NOTES to working copy add set

And look, a new administrative file appeared!

/home/levitte/project$ ls MT

log options revision work

/home/levitte/project$ cat MT/work

add_file "NOTES"

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Adding files

OK, now that we have a working directory, let’s start to do some work.
How about adding a file?

When the file is added, you will see that there’s a new file in the MT

directory, work. This is how monotone keeps track of changes that

involves adding, renaming and deleting files, i.e. changes that can’t be

expressed with a diff.

When satisfied with the changes, commit!

/home/levitte/project$ monotone commit -m "a commit"

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

monotone: beginning commit on branch ’foo.com:project’

monotone: committed revision 2e24d49a48adf9acf3a1b6391a080008cbef9c21

There’s no MT/work any more, it’s operations having been
performed.

/home/levitte/project$ cat MT/revision

2e24d49a48adf9acf3a1b6391a080008cbef9c21

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Committing changes

When done with the change, you need to commit it.
Did you notice, btw, that we’re not giving the –db option any more?
That’s right, you don’t need to do that, since there’s information in
MT/options saying what database you’re working against.

If you look at MT/revision, you will see that it contains the hexadecimal

revision ID shown by the commit command.

Let’s look at the meta-data that came with the committed revision.

/home/levitte/monotone$ monotone list certs 2e

monotone: expanded selector ’2e’ -> ’i:2e’

monotone: expanding selection ’2e’

monotone: expanded to ’2e24d49a48adf9acf3a1b6391a080008cbef9c21’

Key : levitte@lp.se

Sig : ok

Name : branch

Value : foo.com:project

Key : levitte@lp.se

Sig : ok

Name : date

Value : 2004-10-26T02:53:08

Key : levitte@lp.se

Sig : ok

Name : author

Value : levitte@lp.se

Key : levitte@lp.se

Sig : ok

Name : changelog

Value : a commit2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Taking a look at the revision data

For your information, it is good to look at the information that monotone
has stored beside the file changes.

You may note that I shortened the revision. This is part of monotone’s

automatic expansion of some arguments, most notably revision identities.

It basically works as long as the given argument leads to a unique

revision.

If you want to push your changes to a remote server, you need to
send your public key to it’s administrator so he/she can give you
access.

/home/levitte/project$ monotone pubkey levitte@lp.se > ~/levitte.pubkey

\footnotesize

/home/levitte/project$ cat ~/levitte.pubkey

[pubkey levitte@lp.se]

MIGdMA0GCSqGSIb3DQEBAQUAA4GLADCBhwKBgQC2CmCt662Ci9hff7R0YL6n02kksLlEU/+e

2V70s73pYmdFtFTjATYUVgVLV24TdXm5TQaVho4WWzGzGeYtcax4IjLBUo0uzznky4iZLei7

XfLDdFyS3+c4f1DXNx7OA3HkAuyHrxveOnqfMuQzUZoswwTue2Rhx3JUEndi2ubKoQIBEQ==

[end]

After you have access, all you need is to push.

/home/levitte/project$ monotone push

enter passphrase for key ID [levitte@lp.se] : <enter passphrase>

...

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Pushing your changes

I will not take up how to set up a server in this lecture, there’s not
enough space in this lecture for that kind of operation. However, pushing
your changes to another server is easy enough.
First of all (and this is a one-time operation), you need to extract the
public half of your key pair and send it to the owner of the server. The
public key is just a text file which can be viewed with any text processor.

When you have received notice that you now have access, all you need to

do is push

0f7114080f711408

2f415492

bfd13cb1 315944d5

3b9bbaf8

de12a546

9cb4437a

a0592c4e

b99f49b1

/home/levitte/project$ EDITOR=emacs monotone merge

monotone: starting with revision 1 / 2

monotone: merging with revision 2 / 2

monotone: [source] 0f711408dfddd6afa65e9e3f5619d38d250bd09f

monotone: [source] 6714cd29a0bf86c15319199ada76851a9ab2d686

monotone: common ancestor b99f49b10a5135bee6185311f7f68a41c258ffa

b levitte+project@lp.se 2005-09-29T21:45:53 found

monotone: trying 3-way merge

monotone: help required for 3-way merge

monotone: [ancestor] foo

monotone: [left] foo

monotone: [right] foo

monotone: [merged] foo

executing external 3-way merge command

enter passphrase for key ID [levitte+project@lp.se]:

monotone: [merged] 4b3cd3ee5682aa7f5865c4728ea89fd2a7dbba1a

monotone: note: your working copies have not been updated2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Dealing with a fork

So we finally got to the point where there’s a fork in the line of

development. No problem, just merge!

Time to create a branch in the development:. First, we need to
move to a starting point.

/home/levitte/project$monotone update -r b99

monotone: expanded selector ’b99’ -> ’i:b99’

monotone: expanding selection ’b99’

monotone: expanded to ’b99f49b10a5135bee6185311f7f68a41c258ffab’

monotone: selected update target b99f49b10a5135bee6185311f7f68a41c258ffab

monotone: updating foo to bdca16855faf16c12b6f054813bdde0528cc356b

monotone: updated to base revision b99f49b10a5135bee6185311f7f68a41c258ffab

And then we do a reformatting change and commit it to the new
branch.

/home/levitte/project$ monotone ci -b lp.se:testbed.project.reformat \

-m "Reformat"

monotone: beginning commit on branch ’lp.se:testbed.project.reformat’

enter passphrase for key ID [levitte+project@lp.se]:

monotone: committed revision 28e73a329fc2566a734da05521bf51ffdc79dd2b

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Branching

Branching is quite easy, just commit to the new branch!

At some point, you might want to make sure your branch us
updated with the latest changes from the main line of development.

/home/levitte/project$ EDITOR=emacs monotone propagate \

lp.se:testbed.project \

lp.se:testbed.project.reformat

monotone: propagating lp.se:testbed.project -> lp.se:testbed.project.reformat

monotone: [source] 4b3cd3ee5682aa7f5865c4728ea89fd2a7dbba1a

monotone: [target] 28e73a329fc2566a734da05521bf51ffdc79dd2b

monotone: common ancestor b99f49b10a5135bee6185311f7f68a41c258ffab levitte+pr

oject@lp.se 2005-09-29T21:45:53 found

monotone: trying 3-way merge

monotone: help required for 3-way merge

monotone: [ancestor] foo

monotone: [left] foo

monotone: [right] foo

monotone: [merged] foo

executing external 3-way merge command

enter passphrase for key ID [levitte+project@lp.se]:

monotone: [merged] df2f4d07675b0089d6b04864bc30cfe8a98447b42
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

In practice

Propagating from onte branch to another

◮ A repository is potentially distributed world-wide.

◮ A repository is potentially merged together with other
repositories in a single database.

◮ You risk name clashes!

To solve this problem, branch names, tag names and key identities
need to be unique world-wide. There are conventions and
proposals to do just that.

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

A word on uniqueness and world-wide distribution

There’s absolutely noone stopping you from pulling from a lot of different

sources into the same database! This means that for anyone who plans

to use monotone for a public project or a project that just might become

public one day, it’s crucial to think about the uniqueness of your key

identities and branch and tag names.

The general convention is that branches and sub-branches are
separated with periods.

Example: foo.bar.cookies, which is a sub-branch to foo.bar

This isn’t globally unique!

Current convention for globally unique branch names:

RFQDN.branch[.subbranch[...]]

An alternate proposal that separates the host name from the
branches:

FQDN:branch[.subbranch[...]]

Examples: net.venge.monotone, free.lp.se:X.ctwm2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

A word on uniqueness and world-wide distribution

Naming a branch

Branches are generally named as a series of sub-branches separated with
dots, so for example, foo.bar.cookie would be a sub-branch of
foo.bar. There is nothing really stopping you from using a different
convention, except you will confuse the hell of the rest of the world :-).
And this isn’t necessarely globally unique.
There’s currently one name convention to solve this, which is to use a
(your) reversed domain name and tuck the name of your project at the
end. For example, monotone is created by the owner of the domain
venge.net, so the main branch has been called net.venge.monotone.

There has been some talk about reworking this solution so it separates

the host/domain part from the actual branch. I’ve proposed the format

{domain}:{branch}, and am using it for my own projects, for example

free.lp.se:X.ctwm.

With monotone, you can’t have several keys with the same
identity!

Current convention: give each key an email address for an identity.

Example: levitte@lp.se

If you want to use several different keys for different projects, use
an email address with a + directive added.

Example: levitte+project1@lp.se

Note: The key identity doesn’t have to be a real working email
address!

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

A word on uniqueness and world-wide distribution

Naming a key identity

RSA keys are generally given an email like identity, like foo@bar.com.

Again, there’s nothing really stopping you from using a different

convention, and the consequence is the same.

There is no convention for tag names!

2
0
0
5
-1

0
-0

6

Modern Source Code Management and monotone

A word on uniqueness and world-wide distribution

Naming a tag

You may notice that I still have said nothing about tag names, and that’s

because noone has even talked about it yet. It’s just been my experience

that you also need to think about how you want to name tags, unless you

want to do the same stupidity I did, to name them v{n}.{m} for several

projects that eventually ended up in the same repository!

	Content
	The purpose of monotone and the consequences
	It's distributed and works off-line
	It can be set up and used by anyone
	It leaves an audit trail
	It's changeset-oriented and atomic
	It's branch-oriented
	It's history-sensitive
	It's quite easy to understand, and it's consistent

	What does a development tree look like?
	The revision itself
	Meta-data (certs)
	The concept of branches
	The concept of forks in the line of development

	Workflow, storage and control
	Normal workflow
	Storage
	How is control performed?

	In practice
	Creating a database
	Starting a project
	Starting work on someone else's project
	Staying up to date
	Adding files
	Committing changes
	Taking a look at the revision data
	Pushing your changes
	Dealing with a fork
	Branching
	Propagating from onte branch to another

	A word on uniqueness and world-wide distribution
	Naming a branch
	Naming a key identity
	Naming a tag

	Tools
	Where to go next

